954 research outputs found

    The (d,6-Li) Reaction Studies

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Neutron Matter Distributions from Quasi-Elastic (p,n) Reactions

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Exploratory Measurements of the (3-He,n) Reaction at Medium Energies

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Spin Transfer Measurements for (p,n) Reactions at Intermediate Energy

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Mass measurements near the rr-process path using the Canadian Penning Trap mass spectrometer

    Full text link
    The masses of 40 neutron-rich nuclides from Z = 51 to 64 were measured at an average precision of δm/m=10−7\delta m/m= 10^{-7} using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a 252^{252}Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical rr process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in β\beta-endpoint measurements. Differences in mass excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well as systematic disagreement with various mass models.Comment: 15 pages, 16 figures. v2 updated, published in Physical Review

    Energy Dependence of the Ratio of Isovector Effective Interaction Strengths |J_στ/J_τ| from 0° (p,n) Cross Sections

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Gamow-Teller Resonances Observed in 90,92,94-Zr(p,n) at 120 and 160 MeV

    Get PDF
    Supported by the National Science Foundation and Indiana Universit

    Histological response of peritoneal carcinomatosis after hyperthermic intraperitoneal chemoperfusion (HIPEC) in experimental investigations

    Get PDF
    BACKGROUND: In selected patients with peritoneal carcinomatosis from colorectal cancer prognosis can be improved by hyperthermic intraperitoneal chemotherapy (HIPEC) after cytoreductive surgery. The aim of this study was to evaluate the tumor response of peritoneal carcinomatosis in tumor-bearing rats treated with HIPEC. METHODS: CC531 colon carcinoma (2,5 × 10(6 )cells), implanted intraperitoneally in Wag/Rija rats, was treated by hyperthermic intraperitoneal chemotherapy. After 10 days of tumor growth the animals were randomized into five groups of six animals each: group I: control (n = 6), group II: sham operated animals (n = 6), group III: hyperthermic intraperitoneal perfusion (HIP) without cytostatic drugs, group IV: HIPEC with mitomycin C in a concentration of 15 mg/m(2 )(n = 6), group V: mitomycin C i.p. alone in a concentration of 10 mg/m(2 )(n = 6). After 10 days the extent of tumor spread and histological outcome were analysed by autopsy. RESULTS: All control animals developed extensive intraperitoneal tumor growth. Histological tumor load was significantly reduced in group III and group V and was lowest in group IV. In group II tumor load was significantly higher than in group I. Implanted metastases were significantly decreased in group IV compared with group I and group II. CONCLUSION: These findings indicate that HIPEC is an effective treatment for peritoneal carcinomatosis in this animal model. HIPEC reduced macroscopic and microscopic intraperitoneal tumor spread

    Gamow-Teller Strength in Simple Nuclei and Renormalization of the Axial-Vector Coupling Constant

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    General Features of the Gamow-Teller Resonances

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit
    • …
    corecore